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Synopsis

A phenomenological study is made of the effect of a dipole-quadrupole interaction on the 
width and the structure of the giant dipole line in spherical nuclei. The broadening of the line 
is evaluated through the method of moments. The effect of the interaction on the structure of 
the line is also studied by constructing the interaction matrix and diagonalizing it. A classical 
limit is derived for the case of strong coupling. An attempt to correlate the calculated widths 
with those observed experimentally is presented.
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1. Introduction

Since the dipole slate does not correspond to an eigenstate of the 
nuclear Hamiltonian, it is distributed over a large number of levels and 
the giant dipole line acquires thereby a structure of considerable com
plexity. This situation can be pictured as arising from a coupling of the 
dipole vibration to other modes of motion. The difficulty of studying theo
retically the structure of the dipole line stems from the fact that, in the 
present state of nuclear physics, we do not possess a detailed knowledge of 
these other modes of motion and, a fortiori, of the form of the interaction be
tween them and the dipole vibration. This makes it necessary to study first 
the interaction which seems likely to be responsible for most of the broadening 
of the line and then to improve this first picture by considering further 
types of coupling. In the case of O16, for instance, one may start with a 
description of the dipole state in terms of single-particle excitations. The 
particle-hole interaction splits the five 1=1“ states in such a way that most 
of the dipole strength is concentrated in two of the states. One can then study 
the broadening of each of these sharp lines which results from other types 
of coupling (as, for instance, the coupling to stales in the continuum).

It is the purpose of the present paper to examine a mechanism which 
may be expected to give rise to much of the broadening of the dipole line 
in spherical nuclei, namely the interaction between the dipole and qua
drupole vibrations. Both theoretically and experimentally it is a well-known 
fact that an axially symmetric static deformation of the nuclear surface 
splits the dipole line into two peaks. Similarly, the dynamic deformation 
resulting from the quadrupole vibrations of a spherical nucleus determines 
to a large extent the shape and the width of the line by spreading the dipole 
state over many levels. We will tackle this problem in a purely phenom
enological way, limiting our description of the nuclear motion to that pro
vided by the variables representing the collective degrees of freedom of the 
nucleus. While this approach makes the problem easily manageable, it 
obviously prevents us from making any estimate of the broadening of the 
individual levels through the admixture of configurations from the con
tinuum.

1*
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2. The Hamiltonian

The dipole vibrations may be described in terms of the three collective 
coordinates a1/z specifying the relative distance between the centers of mass 
of the neutrons and the protons, and the quadrupole vibrations in terms of 
the five coefficients x2w introduced in the familiar expansion of the nuclear 
surface

7?(6,9?) = 7f0(i +2 ^^(0,9?)). (1)
/<

In the harmonic approximation, the Hamiltonian corresponding to these 
two collective modes is given by

2 
n0 -2 

2=1
9 / > S^z/t-^z/z + C?. 2 a2/z aZu ’ (2 a)

where the are the momenta canonically conjugate to the The 
inertia and restoring force parameters B; and C; are quantities determined 
empirically. 1 he form of the dipole-quadrupole interaction is established in 
a unique way from invariance considerations, if one limits oneself to the 
cubic terms containing no time-derivatives :

"z
J/O/tV (3)

This is precisely the interaction which is responsible for the splitting of the 
dipole line in deformed nuclei. For the coupling constant K we use an 
estimate t4) based on the assumption that the dipole frequency is inversely 
proportional to the nuclear radius:

It is convenient to make a transformation from the 
creation and annihilation operators bj^ and b;u:

X/fl and rr; to the

(->)
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where
«z - r cI/Bi (6)

In terms of the new operators the uncoupled Hamiltonian takes the very 
simple form

2
= i 2(&2^z/z + (6 b)
2 = 1 ft

with the eigenvalues

7f0(A\,AT2) = GYi + 3/2)/ioq + (A2 + 5/2)h«2, (7)

A^ and N2 being the number of dipole and quadrupole phonons, respec
tively.

A simple glance at the coupling term Hj reveals that neither A\ nor AI2 
is a good quantum number. However, for the sake of simplicity, we shall 
always work in subspaces where the number of dipole phonons Aq is 
constant. In view of the very large value of 7ico1} this is an excellent approx
imation since the conservation of parity would allow only the admixing of 
uncoupled states differing by at least two dipole phonons. This approximat
ion is equivalent to retaining only that part of which commutes with

2(- y<i i r// - + (- (8)

We then have for the total Hamiltonian

H = Ho + H'. (9)

As a consequence of this approximation the A\ = 0 states are unaffected 
by the presence of H'. In particular, the vacuum |0), defined as the state 
for which Aq = AT2 = 0, is an eigenstate of both Ho and Ho+ H'.

A complete solution of the problem involves a determination of the 
eigenvalues and eigenvectors of II. This is a clearly impossible task from 
the analytic point of view, since it is tantamount to the solution of a system 
of coupled differential equations in eight variables. One may have the 
temptation to apply an adiabatic approximation of the Born-Oppenheimer 
type, but such a procedure is unfortunately not justifiable here. In molecular 
spectroscopy, the projection of the electronic angular momentum along the 
symmetry axis of the molecule is considered as a good quantum number. 
No approximation of this kind can be made here: for each instantaneous

Kh i / h
II j eq | 1 07?2co2
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quadrupole deformation of the nuclear surface there will be three eigen
frequencies of the dipole vibration corresponding to the three principal axes

where

(10)

ß2 = (io + 2af, tgy = I 2a2/a0. (H)

The variables u0 and a2 specify the shape of the ellipsoid in the frame of 
reference coinciding with its principal axes(1). Since the three eigenfre
quencies E^ß,y') are quasi-degenerate, the corresponding eigenfunctions 
will surely have to be thoroughly mixed in any reasonable approximation 
to the actual = 1 wave functions. This automatically implies the obli
gation to solve a system of coupled differential equations in order to deter
mine those parts of the wave functions which describe the quadrupole vibra
tions. Such a situation presents a great analogy with that encountered in the 
study of the vibronic spectrum (2). We will try to obtain the eigenvectors of 
the coupled system Ho+ H' as a superposition of those of the uncoupled 
Hamiltonian 1IO. This will be achieved by calculating the energy matrix 
with respect to the uncoupled basis and then diagonalizing it. But before 
we carry out this program in detail, it is interesting to see how much in
formation can be gathered on the broadening of the dipole line through a 
simple calculation using the method of moments.

3. Calculation of the width by the method of moments

Let us introduce the 7îth moment

s» - sw --Eo)"i<;i* 1yo>i2. (i2)
I

The kets |z‘> are eigenvectors of the total Hamiltonian H with energies Et. 
Using the closure property we can write

Sn = <O|ô^(H-Eorô+|O>. (13)

The cross section for the excitation of a state i through dipole absorption 
is proportional to (Uz-Fo)|<z|h1!jM|O)|2 and we may define the mean energy 
E of the dipole line as the position of the centre of gravity of the absorption 
cross section:

IT = S2/SL. (14)
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A possible measure of the width of the line is the root mean square 
deviation A :

2(E, - e„ - F:)\e, - Eq)\<î[ 1o>|2

S(£i-.Eo)l<‘WO>l!!i
The first three moments are readily evaluated and we

In general, the second term will be much smaller than the first one, so that 
in first approximation the width of the line will increase linearly with the 
coupling parameter K. This would have been strictly true if we had chosen 
to define Ë as the mean energy of the dipole state; in that case A would 
have been given by the first term of (16) only. In tables 2 and 3 of section 
6 we give the value of 2A for various nuclei. For most of the cases considered 
this quantity turns out to be many limes as large as hw2. This is the reason 
why we cannot study the problem by perturbation theory.

4. Construction and diagonalization of the energy matrix

fhe precedent calculation enabled us to evaluate the effect of the dipole
quadrupole interaction on the width of the dipole line. If, however, we want 
to study how it modifies its structure, we must attempt to determine expli
citly the eigenvalues and eigenvectors of H. To this end we now proceed to 
the construction of the energy matrix and to its diagonalization.

The states over which H' spreads the dipole line have A\ = 1,1 = 1 and 
negative parity. They can be expressed as a linear combination of eigen
vectors of the uncoupled Hamiltonian:

|A\ - l;i;/ - 1,M> - I,; iV2p/2 ; Z - 1,.V>. (17)

The angular momenta and l2 of the dipole and quadrupole phonons are 
vector coupled to a total angular momentum / = 1 with projection M on 
the z-axis. This restricts l2 to the values 0 and 2, since it has been shown 
that no l2 = 1 state can arise from the quadrupole vibrations of the nuclear 
surfaced). For N2 > 4, it is possible to form states with the same l2 and 
^-component of l2 in more than one way. The need to remove at least part 
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of this degeneracy led Rakavy (3> to introduce a new quantum number, 
the seniority v, which indicates how many of the AT2 phonons are not coupled 
pairwise to an angular momentum equal to 0. A state of AT2 phonons may 
have seniorities = A'2, AT2-2, 1 or 0. In the conventional way of 
labelling the irreducible representations of /?5, those would be the (AT2,0), 
(A2-2,0) (1,0) or (0,0) representations. The decomposition of those 
into irreducible representations of may be effected through elementary 
methods (see the Appendix), and table 1 gives the multiplicities of the 
various values of the angular momentum found in a representation of 
seniority v, for values of v going up to 18. Now, we observe an interesting 
regularity: the states with Z2 = 0 or 2 never occur more than once, or both 
at the same time, for a given seniority. Moreover, the lowest value of Z2 is 
equal to 0 if v = 3n and 2 if v = 3n± 1, n being an integer. We checked these 
rules up to v = 18, but could not derive them through elementary methods. 
Of course, these regularities simplify our calculations immensely by en
abling us to characterize uniquely the unperturbed states in which we are 
interested by the two quantum numbers AT2 and v only. We can therefore 
drop the label Z2 attached to the coefficients a in (17).

It is a straightforward matter to show that the matrix elements of H' are 
given by

<11 ;A<pZ9; ld/.H'l 11 ;AT2/'Z2; 1JZ> = - IV(1Z21 Z2 :1 2)<A2///21| a2 || A^2z>Z9>, (18)

where the reduced matrix element <At2p /2 || «2 11 ^'2'^2^ defined by

, , , , 1 , ,A'9, z;, Z9,/7?2 | a2n | A 2, Z2, m2) = -==<Z22m2ja | Z2/zz2)<AT2Z7/2 || a2 || AT2zzZ2>. (19) 
12'2 + 1

The very definition of the operators a2/t yields the selection rules

A 2 = A 2 ± 1

u = p ± 1.

We proceed to the evaluation of the reduced matrix elements in two steps: 
first, by showing that all of them can be expressed in terms of those which 
are taken between states for which v = N2 and, second, by evaluating them 
for that special case. Moreover, because of the trivial relation between the 
matrix elements of b and Z>+, we have to consider only the former.

We begin by noticing that a state with A"2 = 2v + p, v being a positive 
integer, can be written as
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We stick to the convention that all the kets are normalized to unity. The 
normalization coefficients

9 W r
C(2v + p,p) = ” r'll(2^ + 2p + 3) (-3)

-V = 1

are immediately deduced from the recursion formula

2 r=  (2v + 2p + 3)C(2r + v - 2, p).

In deriving this formula we have used the commutation relation

[{^2^2}o’ ~ 5^2 + 2 - p-2^2jU^2/< + ~
' ’’ LI

and the fact that {52Z>2}0 acting on a state \v,v,l2,m^y gives zero. With the 
help of eqs. (21), (23) and (25) we readily obtain

<Ar2 - 1, v - 1, Z2, n?2ifc2AJA72, v, l2, ni2y

= 1/^2-+-—-7<lV2 ~ 3,p - 1, l2, m2\b2 \N2 - 2, v, l2, m2y J N2 + v + 1

I/)V2 + v + 3 , . 1 \ i \! —77—<”~ 1,p- l,Z2,m2|Mp,p,Z2,m2>.
2v + 3

Similarly,
\A2 — 1, p + 1, Z2, m2 52ju -^2» Aj» 77?2/

—<p + 1, p + 1, Z2, m2\b2^\v + 2, p, l2, m2y.

(26)

(27)
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Then, eqs. (21), (23), the commutator

[*VW*4}o]  = ^(-) 2̂% (28)

and the relation between the matrix elements of b and b " vield

(A g 1, p P 1, Z2, ^2 A 9, u,b>, 1112

D
r (lb lb l2> IU2\(.~y b2-n'” +

(20)

In order to evaluate the matrix elements

(v - 1, P - 1,/a, m2\b2p\v, p,/2> rn2>

we must consider separately the three cases p = 3n, 3n + 1 and 3/i

i> = 3n

Since /2 = 0 when v = 3n, we have

( —0,0) = d(—//)|p — 1,p - 1,2, —//)>. (30)

The coefficients d(-y) are easily seen to be independent of /u, so that

and

(i>,i),(),(y<^b^flb2^u,i>,(),0y = 5d2 = p 

d = |/p/5.

(31)

(32)

p = 3/1 - 1

An annihilation operator acting on |p = 3/i - 1, p, 2,31) produces a p = 
3n - 2 state with l2 = 2 or 4; moreover we see from table 1 that the 1.2 = 4 
state never occurs more than once, so that we can write

2<22ip.U|L3/ +jp>(-)jU/?2_/Jp,p, 2,d/> = e(T,3/ + //)jp

(L = 2 or 4).

rfhe coefficients e are independent of M + ^i and, therefore, dropping that 
index, we obtain from (33)

(-yib2_^i>,v,2,M) = 2<22zzdf !7J/ + yu>e(L)|p-l,p- l,/.,.!/-//), (34)
L
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whence
^v,i),2,2I ^b^b2^\v,v,2,2iy = v = ^(22gM\LM + g)2e(L)2 

M L,M
= e(2)2 + ?e(4)2

3

and
<^v,u,2,M \^gb2flb2//\i>,i>,2,My = M

- e(2)2^gX22g3I\2M + /z>2 - e(4)22/E22/zdf |4Af + /i>2.
/i /<

(35)

(36)

For M = (I this relation yields an identity, but for M 0 it gives a unique 
relation

Eqs. (35) and (37) can be solved for e(2)

(38)

which enables us to evaluate the matrix element

<p-1,p-1,2,3Z + /z|(-/ô2_âx|p,p,2,.V> = <22/zM|2M +/z>e(2). (39) 

v = 3n + 1

Relation (29) gives

(i> - l,i> - 1 ,(),()\b2^ i>,i>,2,g) = ]/ —■ — <v, D, 2,/j\(~yib2_^\v + 1, v - 1,0,()>. (40)

Now, we see from table 1 that

(-')^b2_fi\u+l,v- 1,0,0> = f\v,u,2, g) + g\v,v-2,2,g,), (41)

whence we deduce

<u+l,u-l,0,0|2ô^fc2jW|u +l,u-l,0,0> = u+1 = 5(f2 + g2). (42)

The coefficient g may be evaluated from eqs. (26), (30) and (32):

g = (v,i>-2,2,g\(-y{b2 \v+ l,u- 1,0,0> = 1/
I 2u + 1 \ 5 (43)
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From eqs. (42) and (43) we then obtain

and from eq. (40)
(44)

(45)

We remark that the signs of d, e(L), f and g could not be determined 
from the precedent algebraic relations. However, we shall consider that our 
arbitrary choice determines the overall phase of the \v,v, states. Such 
an overall phase is immaterial since we will be interested only in the squares 
of the coefficients.

Using eqs. (5), (18), (19), (26), (29), (30), (32), (38), (39) and (45), 
we can write down the matrix elements of H :

= 1,X2 - = 1 ; -V2, p> =

,1 / W + p + 3)n 
I 15(2z; + 3) if v' = i) - 1 and u = 3n,

;.] / N2 + I’ + 3 if p' = p- 1 and i> = 3n - 1,J 30

7 1/(^2 + v + 3)(p + 2
1 15(2p+l) if v’ = v- 1 and i) = 3n + 1,

/ I /GV2 “ ^)(^ + 3) if vr = p + 1 and zz = 3n,K 15(2p+5)

pl /(^2 ~ p)(" + O
15(2z? + 5) if v’ = D + 1 and i> = 3n - 1,

i-l/v
30 if v' = p+1 and i> = 3n + 1,

where
A-_ _ |/_ 4» .

BioJi ] 2B2co2

(46)

(47)

We are now in a position to construct the complete energy matrix. The 
rows and the columns are arranged in order of increasing N2 and, for each 
N2, of decreasing p. It is convenient to express the whole matrix in units of 
hco2. If the diagonal terms corresponding to 5/2(1 + ctq/co2) times the unit 
matrix are omitted, the matrix becomes
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O r/|/l/3

/z| 1/3 1 ?/| 7/30^/2/15

,,| 7/30 2 0 >/|/l /5r;|/l/15

r/|/2/15 0 2 0 7/15

"1 Zl/5 0 3
i 722

0 TÏ5

1/1ÖZ/I 7/15 0 3 0 ^3/10^/4/15

1 /22
T« 0 4 0 0 >/| 13 i

/3Ö’'| / 4
45

1;|/3/10 0 4 0 0 >/[/H 1 
Z45Z? 1/2/15

0 0 4 0 o >/]/ 3/5

"1 /13
30 0 0 5 0 0

"I ! 1
45’’

I/'11
1 45 0 0 5 0

7)\l/iW 3/5 0 0 5...........'I

here ?? = k/ha>2. (48)

This matrix was diagonalized on the GIER computer of the Astronomical 
Observatory of Copenhagen. As // was increased, larger and larger matrices 
had to be considered in order to decrease the error due to their finite size. 
The eigenvalues of the total Hamiltonian

= l;i;Z = 1,M> = = l;z;/ = 1,M> (49)

and the corresponding coefficients alNtV of the eigenvectors were evaluated 
for some values of rj ranging from [/3 to 6| 3. Figs. 1-4 represent the dis
tribution of the dipole state amongst the various levels. The length of the 
lines is proportional to the square of the quantity Oq0

fzoo = Z^p/O) (50)



Nr. 11 15

Fig. 1. Fig. 2.
N9,max is the largest number of phonons considered.

involved in the calculation of the cross sections. The coupling between the 
dipole and quadrupole modes appears to give rise to quite a complicated 
structure of the dipole line for sufficiently large values of rj. It is difficult 
to predict how much of this structure will persist once the intrinsic widths 
of the levels have been added to the picture. The whole situation is made 
even more complicated by the fact that the dipole mode may be coupled 
to other modes beside the quadrupole vibrations.

5. A classical approximation

In the limit zl » ha>2 it is possible to derive a classical expression for the 
probability P(E') of exciting an eigenstate at an energy E through dipole
absorption :

C(£) - 2<i|fc+,|U>|2<5(E- £, + /•;„)
i (51)
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(Fi —Ti U), ) / Ti GJ2

Fig. 3.
A',7 x is the largest number of phonons considered. The curve shows the classical approximation.

We can then drop the part of the Hamiltonian which describes the quadru
pole vibrations and the coupling between the normal dipole modes through 
the angular velocity of the intrinsic axes, keeping only the terms

W~2(X6ij+ >/2) 1 
i

2Æ
V'30 Ci

/?cos(y - 2^r//3) haq, (52)

where b'A and b\j are the creation and destruction operators for a dipole 
phonon along the axis j. Substituting (52) into (51), expressing bl/( and b1Ll in 
terms of the primed operators and integrating over the Euler angles, we 
obtain
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(£■ -TiCü,) / TiCü2

Fig. 4.
^2max 1S the largest number of phonons considered. The curve shows the classical approximation.

This expression has an immediate physical meaning: since the absorption 
of the dipole radiation lakes place in a time which is very short in com
parison with the period of the quadrupole vibrations1, a nucleus possessing 
a deformation (ß,y) will absorb only photons with the energy required to 
excite one of the three normal dipole modes; the probability that this hap
pens is proportional to ^(ß, y), the ground state wave function for qua
drupole oscillations. We average over the three intrinsic axes, because 
unpolarized nuclei are considered.

1 It is possible to form a wave packet with an energy spread large compared with the qua
drupole energy but small compared with the width of the dipole line.

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 11. 2
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The integral in (53) is evaluated without difficulty and yields

The classical result is shown in figs. 3 and 4. When comparing it with the 
exact solution, one should not forget that P(E} is a probability density, so 
that it should be compared with SC^oo)2/^^> the summation being extended 
to all levels in the interval AE. For the values of r] considered, however, the 
level density is still too low to make the construction of a histogram 
meaningful. The exact solution tends slowly towards the classical limit and 
it is doubtful whether the latter is of any validity for the cases of physical 
interest. This may seem surprising al first sight, since it is possible to study 
an analogous problem where the exact solution tends rather rapidly towards 
the classical limit, namely the motion of two coupled harmonic oscillators 
in one dimension with frequencies and co2 such that eq » m2. The situ
ation, however, is more complex here: the classical limit has a structure 
and it will not be a good approximation Io the exact solution until there 
are many lines under each of its three peaks.

6. Comparison with the experimental results

We will now attempt to compare the calculated widths with those 
observed experimentally. For many reasons this is not an easy task. The 
quantity J which we calculated is the root mean square deviation of the 
dipole absorption cross section, if one neglects the intrinsic width of each 
line. Of course no such quantity is known experimentally and the best we 
can do is to compare 2A with some parameter characterizing the width of 
the observed line. For the sake of simplicity, we choose E, the full width at 
half maximum cross section, as this parameter. Since the two compared 
quantities are not exactly the same, we cannot expect to do more than 
reproduce the general trends of the variation of the width as a function of 
the parameters involved. The comparison is made yet more difficult by the 
fact that, for many of the nuclei considered, the cross section <r(y, n) is used 
without any correction for the neutron multiplicity, so that we tend to have 
an overestimate of the actual width. Since we consider nuclei with A > 50, 
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the neglect of the (y,p) process should not introduce a great error. Another 
difficulty lies in the choice of hco1. We take for this quantity the value of the 
energy at which the cross section u(yn) has its maximum.

Strictly speaking, our theory is applicable to spherical even-even nuclei 
only. Unfortunately there is a scarcity of experimental data on the dipole 
line of those nuclei. For this reason, we also consider a certain number of 
odd-A nuclei, assuming that the odd nucleon does not have a great in
fluence on the shape of the dipole line and, in particular, that its inter
action with the nuclear surface does not perturb the interaction between the 
dipole and quadrupole modes. The parameters ha>2 and C2 are taken to be 
those of the adjacent even-even nuclei. When the experimental spectrum of 
the odd-A nucleus, with a certain amount of optimism, can be interpreted 
as resulting from the coupling of the odd nucleon to the surface vibrations 
of one of the adjacent nuclei, the vibrational parameters of the Jailer are 
used. In all other cases, at least in so far as the available data enable us 
to do so, we use an average of the parameters of both neighbours. When, 
however, the two sets of parameters are widely different (near a closed shell), 
we give separately the widths predicted for each of them.

A may be calculated from (16) or, alternatively, the eigenvalues and 
eigenvectors obtained through the diagonalization of the matrix may be 
used in conjunction with eqs. (15) and (50):

i

The first method is an exact one, whereas the second one contains a certain 
inaccuracy stemming from the finite size of the matrix and from its numer
ical diagonalization. A comparison between the results obtained in both 
ways is useful in that it provides an indication of the order of magnitude of 
this inaccuracy. The discrepancy turns out to be of a few percent only.

The experimental widths, the exact theoretical quantities 2d and all the 
relevant parameters are presented in tables 2 and 3 for even-even and odd-A 
nuclei, respectively. The values of the width due to the dipole-quadrupole 
interaction are seen to vary between one third and one half of the experi
mental ones. This is hardly surprising, partly because of the uncertainties 
in the comparison which were indicated above, partly because of the very 
nature of the present calculations. We have assumed that the quadrupole 
phonons do not interfere with each other although the inaccuracy introduced 

2*



20 Nr. 11

Table 2.

1 Measured by the method of residual activity.
2 Corrected for neutron multiplicity.

Nucleus I KO 2 

(MeV) (MeV) Ref. tia>l
(MeV)

r
(MeV)

Ref. 2d
(MeV)

30^11 1.03 49 5 16.3 6.3 11 3.4
azGe70 0.88 53 5 17.5 8.0 12 3.2
38Sr88 1.85 258 6 16.3 4.0 13 2.1
4«Zr«2 0.92 151 7 16.9 5.5 13 1.9
42Mo82 1.52 173 8 16.0 2.71 14 2.2
48Cd112 0.610 42 9 16.0 5.12 11 2.8
soSn 1.19 235 9 15.8 5.02 15 1.7
5oSn“2 1.26 280 10 16.0 5.0 16 1.6
5oSib24 1.13 240 9 15.5 5.0 16 1.6
82Pb208 - - 13.8 3.52 31 ~ 0

when dropping the anharmonic and higher order terms of the quadrupole 
Hamiltonian is probably not a negligible one; moreover, we have con
sidered only the dipole-quadrupole interaction and neglected completely the 
coupling to other modes of motion. The present results indicate that these 
other effects arc of the same order of magnitude as those due to the dipole
quadrupole interaction. We therefore conclude that the latter plays an 
appreciable part in the broadening of the giant dipole line in spherical 
nuclei, although it is clearly insufficient to explain the whole width of the line.
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Table 3.

Nucleus Adjacent 
nuclei

foo2
(MeV)

c2 
(MeV) Ref. flCOj 

(MeV)
r

(MeV) Ref. 2d
(MeV)

23v81 Cr5224VJ 1.43 79 23 19.02 7.51 17 3.7
25Mn« rr54 £>5624Vd > 261 L 0.85 58 24 18.22 6 1 18 3.2
27Co58 £>58 X’i60261 C > 28iX1 1.07 50 24 17.92 7 1 17 3.8
29Cu83 28Ni92 1.17 79 25 16.3 8.5 19 2.9
29Cu88 28Ni84 1.34 122 25 17.0 8.13 19 2.6
3 3 As« 32Ge74, 34Se76 0.58 15.5 5 17.3 9.0 20 1.7

38Sr87 38Sr88 1.85 258 7 15.8 5.3 13 2.0
V8939 1 38Sr88 1.85 258 7 16.3 3.8 13 2.1

4«Zr91 49Zr92 0.92 151 / 16.5 5.0 13 1.9
41Nb93 4oZr92 0.92 151 7 17.0 6.8 20 1.9

42Mo94 0.874 72 9 2.7
40Zr92, 42Mo94 0.90 112 7, 9 2.2

45Rh193 44Ru102, 46Pd104 0.515 24 9 16.42 6 1 21 3.4
47Ag107 ,16Pd«8 0.513 25 9 16.0 6 1 21 3.2
49In115 48Cd114 0.555 36 9 15.42 5.51 21 2.7

50Sn118 1.268 260 9 1.6
48Cd144, 50Sn118 0.912 148 9 1.8

53I127 52Te428 0.673 64 9 15.5 4.91 11 2.3
57La«9 56Ba138, 58Ce140 1.513 346 26, 27 15.5 5.21 15 1.5
58Ce141 58Ce»9 1.596 379 27 16.0 4.51 15 1.6

58Ce»2 0.630 78 27 2.1
58Ce140, 142 1.113 229 27 1.6

59Pr141 58Ce449, 60Nd142 1.583 372 27 15.0 3.01 22 1.5
7 «Au197 78Pt496, 80Hg198 0.385 69 28, 29 14.2 4.71 11 1.5
81T1 80Hg292, 294 0.433 330 29 14.6 4.61 11 0.8

82Pb204, 208
80Hg202, 204 and

0.832 1337 30 0.6

82Pb294, 208 0.633 834 29, 30 0.6
82Pb29’ - - 13.8 3.51 31 ~ 0
83Bl299 - - 13.8 3.51 31 ~ 0

1 Corrected for neutron multiplicity.
2 Nucleus for which a splitting of the giant dipole line was observed. The two peaks at

Ea and have an integrated cross section <ja and 07,, respectively. We take ha>1

3 Total formation cross section, including cr(y,p).

o'a-E'a +
°a + °b

Institute for Theoretical Physics 
University of Copenhagen.



Appendix

Rakavy <3> indicated an elementary method to determine the represen
tations l2 of /?3 contained in a representation (u, 0) of R5. He showed that 
c/v(/2), the number of times Z2 that appears in (zyO), is given by the simple 
formula

<Zv(/2) - + + (Al)

where Z>A(J/) is the number of ways in which AT quadrupole phonons may 
have a projection M on the z-axis. For more than a few phonons, however, 
the evaluation of the quantities bN(M) becomes extremely tedious if one 
undertakes to determine explicitly all the possible ways of projecting N 
phonons on the z-axis, and we should like to indicate a graphical method 
which permits to obtain bN(.\I ) — bN_2(M) very rapidly.

If phonons have a projection /z on the z-axis, we have

A — A 2 + A i + A Q

M = 2v2 +v1,

(A 2)

(A3)
where

N/( = n/t + n-fi
and

V = nfi - fi-

From (A 2) it is obvious that

0 < At2 < A’ (A4)
and

0 < A\ < A’ - At2 . (A 5)

For a given value of v/z can be equal to A),, A’^ - 2, A’({ - 4,  
— A’,,. One can then write down the arrav shown in table Al. It indicates 
all the possible ways of forming the pair (zq.r,) with A' phonons and, with 
the help of (A3), may be used to evaluate the quantities bN(M). If one is
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Table Al.

X2 Possible
values of r2

Possible
values of

N X, X - 2, X - 4......... ............... -X 0 0
N - 1 X - 1, X - 3............. . . . -X + l 1 1 -1

0 0
N- 2 X - 2, X - 4........... . . -X + 2 2 2 0-2

1 1 -1
0 0

0 0 X X, X - 2, X - 4............. .... -A'
X- 1 X-l, X-3, X —5 ... -X+l
X- 2 X - 2, X - 4............... -X + 2

1
0

1 -1
0

Table A2.

X2 Possible 
values of v2 Ah

Possible
values of 14

X X , - X 0 0
X-l X - 1, - X + 1 1 1 -1

0 0
X-2 X - 2, -X + 2 2 2 0-2

1 1 -1
0 0

0 0 X X, X - 2, X - 4 ..........................- X
X-l X - 1, X - 3, X - 5 .... - X - 1
X-2 X - 2, X - 4.................-X + 2

1
0

1 -1
0

interested in the differences bN(M) - bN_2(M) only, it is possible to introduce 
a considerable simplification by constructing a similar array for — 2 
phonons and “subtracting” it from that corresponding to TV phonons, with 
the result presented in table A2. The simple symmetry properties of this 
array suggest to construct a tableau in the - v2 plane such that at each 
point corresponding to the pair of integers we write down the num-
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N -

N-2 -

N-4

N-6 -

1
1 1

1 1 2
112 2

1 1 1
112 1 
12 2 2
2 2 3 2
2 3 3 3
3 3 4 3

1
1 1
2 1 1
2 2 11
3 2 2 1 1

-5 O 5 V!
Fig. Al. Structure of the tableau permitting to determine by(M)- by-2(M)-

ber of times this pair occurs in table A2. Il is immediately obvious from the 
latter that the tableau will have the structure shown in lig. A 1 and possess 
reflectional symmetry with respect to the axis. If we then draw the straight 
line M = 2r2+v1, and add up all the numbers of the tableau that fall on it, 
we obtain the quantity bN(M) - bN_2(M). Once we know how to build the 
tableau, we can write it down immediately for any value of A’. An example 
is given in lig. A2 for 1V = 8.
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16, 1

I I I i I I I I I I I I I I I I I I I
- 5 0 5 10 V1

Fig. A2. The two numbers at the end of each line are M and by(M) - by _2(M), respec
tively.
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